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Abstract

Development of sustainable agricultural management systems will depend, in part, on the ability to better use renewable
resources, such as animal manure, and to synchronize the levels of soil available N with crop plant needs during the grow-
ing season. This study was conducted at the US Meat Animal Research Center in the ceniral USA to determine whether
differences in electromagnetic (EM) soil conductivity and available N levels over a growing seasori can be linked to feedlot
manure/compost application and use of a green winter cover crop. A series of soil conductivity maps of a research cornfield
were generated using global positioning system (GPS) and EM induction methods. The study site was treated over a 7-year
period with manure and compost at rates matching either the phosphorus or the nitrogen requirements of silage com (Zea
mays L.). The plot was spiit for sub-treatments of a rye (Secale cereale L.) winter cover crop and no cover crop. Image
processing techniques were used 1o establish electrical conductivity (EC) treatment means for each of the growing season sur-
veys. Sequential measurement of profile weighted soil electrical conductivity (EC,) was effective in identifying the dynamic
changes in available soil N, as affected by animal manure and N fertilizer treatments, during the com-growing season. This
methed also clearly identified the effectiveness of cover crops in minimizing levels of available soil N before and after the
corn-growing season, when soluble N is most subject to loss. The EM method for assessing soil condition provides insights
into the dynamics of avaitable N transformations that are supported by soil chemical analyses. This real-time monitoring
approach could also be useful to farmers in enhancing N use efficiencies of cropping management systems and in minimizing
N losses to the environment. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction to determine nutrient concentration at specific loca-
tions determined by conventional surveying methods.

Evalnation of nutrient availability as a result of soil While this approach yields precision both in composi-
a{n_endmems such as livestock manare is difficult. Tra- tion and position, it is expensive, time consuming, and
ditional methods of monitoring nutrients use soil cores may not account for spatial and temporal variability of
measured attributes where animal manure is applied.

Abbreviations: USMARC, US Meat Animal Research Center: EM. Methods are needed to estimate the relative level of

electromagnetic; GPS, global positioning system; EC. electrical nutrients when manure is used. Geophysical methods
corductivity; EC,. profile weighted electrical conductivity
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Instruments that measure soil conductivity without
the use of soil probes are available commercially.
These instruments use electromagnetic (EM) induc-
tion as a noninvasive method of measuring earth
conductivity. Profile weighted soil electrical con-
ductivity (EC,) can provide an indirect measure of
important soil properties (Sudduth et al., 2000). The
EM instrument is sensitive to factors that influence
soil conductivity, including: (1) soil moisture content,
(2) amount and type of saits in solution; and (3) the
amount and type of clays present (Brune and Doolit-
e, 1990}. Electromagnetic technigues are well suited
for mapping soil conductivity to depths useful for
agriculturalists (McNeill, 1990). Electromagnetic ter-
rain conductivity has been shown to be a very useful
tool in locating seepage from animal waste lagoons
{Ranjan et al., 1993). Sudduth and Kitchen (1993)
used EM methods to estimate clay pan depth in soil.
Electromagnetic methods have been used to map soil
salinity hazards (Williams and Baker, 1982, Corwin
and Rhoades, 1982). Electrical conductivity methods
have been shown to be sensitive to high nutrient lev-
els (Eigenberg et al., 1996, 2000) and have been used
to detect ionic concentrations on or near the soil sur-
face resulting from field application of cattle feedlot
manure. Flectrical conductivity has generally been
associated with determining soil salinity; however,
EC also can serve as a measure of soluble nutrients
(Smith and Doran, 1996) for both cations and anions
and is useful in monitoring the mineralization of or-
ganic matter in soil (De Neve et al., 2000). Doran
et al. (1996) demonstrated the predictive capability of
soil conductivity to estimate soil nitrate.

The objective of this work was to determine the
utility of EC, maps to determine the agronomic ef-
fectiveness and environmental consequences of N
fertilization through varying application rates of com-
post, manure, and commercial fertilizer and use of
cover crops. This ‘time lapse’ sequence was planned
to allow observation of temporal field dynamics as a
result of treatment application and biological activity.
Image processing methods were used to extract treat-
ment soi] conductivity values of the field. Statistical
tests were performed to determine if temporal effects
of soil conductivity were significant for the manure,
compost, and cover crop treatments. Correlations were
computed for soil conductivity and measured soil
constituents.

2. Methods
2.1. Site

A center-pivot irrigated fleld of silage comn (Zea
mays L.) located at the US Meat Animal Research
Center (USMARC) served as a comparison site for
various manure and compost application rates for
replacement of commercial fertilizer, with the same
treatmment assigned to field plots for 7 consecutive
years. The soil series at this site is a Crete silt loam
{(fine, Montmorillonitic, Mesic Pachic Argiustolls).
0-1% slope. Five main plot treatments (6.1 m x 244 m)
of manure and compost at rates matching either the
phosphorus (P) or the nitrogen (N} requirements
of the silage corn and a fertilizer N check at the
recommended rate were replicated four times. The
experimental field (244 m x 244 m) was arranged in
a randomized complete block design with a split plot
for winter cover crop (Secale cereale L.) versus no
cover crop. Rates of application for the 1999 crop
season are given in Table 1.

2.2. Field operations on the research comfield

Field treatment nutrient application rates for each
season were based on soil core analysis and plant
chlorophyll measurements (Ferguson and Nienaber,
2000). Applications of two manure sources (beef
feedlot manure and composted beef feedlot manure)
were made each spring according to two strategies:
(1) to approximately supply the total crop demand
for N (252kgN ha~! average annual uptake), denoted
MN and CN for manure and compost, respectively;
or (2) to supply the approximate crop removal of
P (45kgPha~! annualiy), denoted MP and CP for
manure and compost, respectively. Treatments MP
and CP each had sufficient carry-over phosphorus in
the 1999 season so that no manure or compost was
applied to these treatment strips (6.1 m width of eight
corn rows). Treatments MN and CN were the only
treatments receiving manure/compost application on
Julian Day (JD) 119-120 at total N rates of 249 and
222kgNha™!, respectively (Table 1). These rates are
much lower than the average annual application of
total N over the 7 years of this study of from 740 to
808 kg Nha~! for MN and CN, respectively (Fergu-
son and Nienaber, 2000). The field was disked on JD
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Table 1
Treatment types. dry maiter application rates, and total and available N and P levels applied to trrigated cornfield in 1999
Treatment Dry matter
Applied? Total NP Available Total C° Total P
(mgha=h {kgha ) N® (keha™!) {kgha="} {kgha™!)
Manure at N rate {MN) +~Ccd 30.0 273 95.6 2490 57.6
-CC 249 224 78.4 2070 47.8
Average 27.5% 249 87.0 2280 527
Compost at N rate (CN) +CC 393 200 50.0 1850 127
-CC 47.9 244 61.0 2250 155
Average 43.6 222 55.5 2050 141
Manure at P rate (MP) 0 168 168 4] 0
Compost at P rate {CP) 0 168 168 0 0
Fertilizer N (NCK) 0 168 168 0 0

* The percent solids of marure and compost were 53.3 and 74 8%. tespectively.
"N comtent of manure = 0.91% and compost = 0.51%; C content of marure = 8.3% and compost = 4.7%: P content of manure

= 0.192% and compost = 0.323%,

“Total N mineralized the first year assumed to be 35% for manure and 25% for compost; P mineralized the first year assumed 10 be

22% for manure or compost.
4 -CC: cover crop; —CC: no cover crop.
¢ Average for with and without rye cover crop.

121, worked with a spring-tooth harrow on JD 133,
and planted to com on JD 134 (14 May). A commer-
cial check (NCK) treatment received a side-dressed
application of NH; at 84kgNha~! (751bacre™!) on
JD 164. On JD 201 urea—ammonium N solution was
applied with a high clearance applicator to MPE, CP
and NCK at a rate of 84kgNha~! (751bacre™!) of
available N on JD 201. The corn was chopped as
silage on JD 251 (8 September). The new cover crop
of wheat was drilled on JD 263.

2.3. Equipment

A commercial magnetic dipole soil conductiv-
ity meter! (EM-38, manufactured by Geonics Ltd.,
1992)! was used in this study. This instrument was op-
erated horizontally and had a response that varies with
depth in the soil, yielding a profile weighted electrical
conductivity, hereafter designated EC,, that was cen-
tered at a depth of about 0.75 m. Generally, at a trans-
port speed of 6ms™!, about 40 samples across the
length of each plot were collected with the EM-38 for
each pass. The 6.1 m width (eight corn rows) of each
plot was about the soil width surveyed by the EM-38.

! Names are necessary to report factually on available data: how-
ever, the USDA neither guarantees nor warrants the standard of the
product, and the use of the name by USDA implies no approval
of the product to the exclusion of others that may alse be suitabie.

The EM-38 was transported through the field either
mounted on a trailer thar was pulled behind an all
terrain vehicle (ATV) or pulled on a plastic sled by
hand when the corn became too tall for the ATV. All
reported EC, measures in this paper have been cor-
rected to the ground surface based measures (Eigen-
berg et al.,, 2000). Testing results of the reliability,
repeatability, and sensitivity of the EM-38 in discern-
ing field-generated measurements versus artifacts of
instrument configuration are given by Eigenberg et al.
(2000).

A Trimble PRO-XL GPS! (¢lobal positioning sys-
tem) unit was used to obtain positional data. The
EM-38 was connected to the GPS unit through a
smalt dedicated battery powered microcomputer (On-
set Computer, Model IVa). The GPS unit collects and
stores positional data and field EC, values.

2.4 Soil sampling

Two soil cores (1.91cm diameter) were taken
throughout the growing season with a hand probe
from depths of 0-23c¢m and 23—46cm at randomly
selected sites within each treatment and cover crop
combination. The cores were taken within one day of
the EC; surveys and were analyzed to determine total
N, KCl extractable NHs and NOs and soil moisture
content by a local commercial soil testing laboratory.
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More exiensive soil analyses for soil moisture; total
and organic N, KCl extractable NOy, NH.. and NOs;
soil pH and electrical conductivity on 1:1 soil to wa-
ter extracts; and Brayl-P, Ca—P sulfate, and CaNO;3
chloride were run on two sample sets, one before (16
March, JD 75) and one after (13 September, JD 252)
the corn-growing season. Soil water-filled pore space
{WFPS), which 1s synonymous with soil relative sat-
uration. was calculated from soil gravimetric water
content using the foliowing relationship:

volumetric water content (cm? cm ™)

" total soil porosity (em? pore space cm—? soil)

where volumetric water content = gravimetric water
content (g H-O g~! soil} x soil bulk density (gcm™>
or mgm™), assuming 1g H-O = lcm® and soil
porosity = [1 — (soil bulk density/2.65 (soil particle
density)].

Collaborating researchers also sampled soil to a
depth of 1.5m to determine if N or P had leached be-
low the root zone (Ferguson and Nienaber, 2000).

Novthing, m

2.5. Data handling and processing

Map data were transferred 1o a PC after each sur-
vey. with the stored files converted to ASCII format
suitable for input inte a contouring and 3-D mapping
Surfer® program {Golden Software Inc., 809 14th
Street, Golden, CO. 80401-1866). Maps were gener-
ated using an inverse distance interpolator.

The scanned points of each treatment strip were for-
matted {Eigenberg et al.. 2000) to be compatible with
statistical software {SAS, 1985). The effects of treat-
ment, cover crop and treatment x cover were analyzed
using Proc GLM (SAS, 1985). Additionally, correla-
ttons of EC, with NOs, soil EC;.;, and soi] water con-
tent were computed using Proc Corr (SAS, 1985).

3. Results and discussion
3.1 EC, maps

Presented in Fig. 1 is an EC, image of the comfield
that was produced at the midpoint (June 14, JD 165) of

ek i, mSfm

Fig. 1. A representative image of the EC, map of the cornfield made in the middle of the corn-growing seasen (JD 165). The cover crop
areas are shown and some treatment strips are apparent in the image indicating conductivity differences for the treatments.
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Fig. 2. Seasonal changes in EM38 measured soil profile EC, as affected by manure (MN, MP), compost (CN. CP), and fertilizer N (NCK)
treatments for silage com at MARC in 1999. Conductivity values piotted represent the average of with and without a rye winter cover
¢rop. Also shown are relevant management and corn growth events during the crop-growing season. Significant differences (P < 0.035)
between compost and manure treatments and the fertilizer N treatment for each date are indicated by an asterisks () above the plot lines.
(a) JD 165, fertilizer applied to NCK plots only: (b) JD 201, fertilizer applied to NCK, MP. and CP plots.

the comn-growing season. When viewed in sequence,
the series of maps illustrates the field dynamics with
overall EC, values rising uniformly with time (images
not shown). The application of manure and compost
produces clearty visible changes in map appearances.
Subsequent darkening occurs (lower EC values) in the
later maps (JD» 180 and beyond) as crop uptake and
nutrient transport dominate the image. What is sug-
gested in the images is more evident in the mean val-
ues extracted from the image data and illustrated in
Fig. 2, that represents average values for each treat-
ment (40 or more readings) averaged across four repii-
cates and the two cover crop treatments. The asterisks
in Fig. 2 indicate significant differences (P < 0.05)
in treatments as compared to the commercia) fertil-
izer check treatment (NCK). The EC. of MN and
CN treatments trended higher than other treatments
for a 2-month period (JD 119-180} after application
of manure and compost on JD 110 (20 April), and

were significantly greater for more than one month
(JD 144-180). This likely resulted from mineraliza-
tion of residual and freshly applied N from manure
and compost and the addition of salts and available N
as NHy and NO;. Treatment effects were similar be-
tween cover crop treatments except, as discussed by
Eigenberg et al. (2000), EC, mean values for the por-
tion of the field receiving the CN treatment without
cover were significantly different from the NCK from
the beginning of the season (JD 75) through crop har-
vest on JD 236 (data not shown).

3.2. Soil electrical conductivity as an indicator of
biophysical changes in plant available N

Seasonal changes in soil electrical conductivity for
silage corn with and without a rye cover crop for 1999
are shown in Fig. 3. In general, EC, for zll treatments
increased from mid-March (JD 75) through mid-June
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2 Fenilizer applied to NCK plots only
B Fertilizer applied to NCK, CP and MP plots

Fig. 3. Comparison of EM-38 measured soil electrical conductivities with and without a rye winter cover crop. The presence of a rye cover
crop resulted in significantly lower soil electrical conductivity levels through petiods of the year when the cover crop was growing and
com was not in the active growth phase. Significant differences (P < 0.03) between the rye cover crop and no cover crop for each date are
indicated by an asterisks () above the plot lines. Also, shown are relevant management and corn growth events during the crop-growing
season at MARC in [999. (a} JD 163, fertilizer applied to NCK plots only; (b) JD 201, fertilizer applied to NCK, MP, and CP plots.

(JD 165) when ammonium fertilizer N was applied
to the N check plot when com was almost 30 cm tall
(four to six leaf stage). Conductivity declined there-
after throughout the growing season, reaching values
at or below the initial early spring values about three
months after com silage harvest.

The trends observed for EC, during the growing
season generally paralieled changes in soil temper-
ature throughout the year, particularly for the Scm
soil depth (Fig. 4). Soil microbial activity doubles
with each 10°C increase in temperature between 10
and 35°C (Parkin et al., 1996). Thus, the increases
in EC; with increasing temperature apparently fol-
lowed a trend cimilar to that for microbial activity.
The peaks in soil temperature throughout the year,
however, were out of phase with those for conduc-
tivity, with the conductivity peaks lagging the soil
temperature peaks by 5-7 days. If conductivity is
a good indicator of the dynamics of scil available

NOs3 levels, as suggested by Smith and Doran (1996),
this may have resulted from the two-step process of
organic N mineralization. The formation of the first
product (NHy) is brought about by many different
microorganisms over a wide range of soil conditions.
The second step, the oxidation of NHy to NOs, is
brought about by a select group of aerobic bacteria
that are more sensitive to soil temperature, soil water
content, and oxygen availability. Another explanation
for the out of phase nature of temperature and EC; is
the fact that sudden declines in soil temperature are
associated with rainfall events, especialty during the
early growing scason. The delayed declines in EC,
observed may be associated with the loss of NO;
from soil due to leaching or denitrification that occur
under wet soil conditions after rainfall (Fig. 4).

The declines in EC; (Fig. 3) that were observed
between JD 121 and 134 and between JD 145 and
159 were apparently related to soil conditions which
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Fig. 4. Soil temperatures and precipitation events (rainfall and center-pivet irrigation) for the manure management plots at MARC, Clay

Center, NE for 1999,

approached saturation during these periods (Eigenberg
et al., 2000). Although fluctuations in soil water con-
tent were partially associated with oscillations in EC,,
it is obvious that water and nutrient uptake characteris-
tics of growing corn were the major factors controlling
soil electrical conductivity later in the growing season.
This period in the growing season occmred between
JD 165, when commercial fertilizer was applied to the
N check when corn was about 30c¢m tall, and on JD
251 when com silage was harvested (Fig. 3). It is in-
teresting to note that the downward trend in soil EC,
was reversed between JD 193 and 215 at which time
the corn was 2-3 m tall and in the silking stage. Also,
as mentioned earlier, 84 kg N ha~! urea—ammonium N
solution was applied on JD 201 to MP, CP and NCK
treatments. Researchers have noted that during silk-
ing of comn there is very little uptake of N, regard-
less of soil moisture condition and plant stress (James
Schepers, personal communication, November 1999
{Schepers, 1999)),

The scil EC, values observed in this study,
52-78mSm~' (0.52-0.78dSm™"), were generally
beiow the threshold of 0.8-1.0dSm™ ' (soil:water.
1:1), above which the growth and activity of plants
and microorganisms can be significantly altered

{Smith and Doran, 1996). However, the results of this
study suggest that soil electrical conductivity may
serve as a useful indicator of available N in soil as
suggested by Gajda et al. (2000) and Patriquin et al.
(1993). Throughout the year, when corn was not in an
active growth phase, the presence of rye as a growing
cover crop resuited in significantly lower levels of
EC, (Fig. 3). In general, the lower scil EC, values
with the growing cover crop were also associated
with lower levels of NO1 in the soil (Eigenberg et al.,
2000). However, after disking and incorporation of
the cover crop on (JI 121), soil NOj3 levels increased
intermittently until JD 180 in cover crop plots, espe-
cially those receiving manure and compost (MN and
CN). During this period twe declines in conductivity
after ID 119 and 144 were associated with brief rain-
fall periods which resutted in the soil approaching or
exceeding saturation. Under these conditions, soluble
NO3;-N would be expected to be lost due to leaching
or denitrification. Parkin et al. (1996) demonstrated
that considerable N can be lost from soil by den-
itrification when soil water content exceeds 80%
water-filled pore space (80% relative saturation).

It appears from this study that the mineralization
and loss of available N from soil can be reasonably
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estimated from soil electrical conductivity values.
The average change in soil EC, berween JDb 110,
when compost and manure were added to soil. and
JD 165, before corn started removing appreciable
available N, with and without a winter cover crop
averaged 0.14 and 0.12dSm™! (14 and 12 mS$ m~ 'y
This equates to 19.6 and 16.8 ppm available mineral
N, respectively (Smith and Doran, 1996; EC (dSm™")
x 140ppm N (dS m™")~! = microgram of avatlable
Ng~! soil). Assuming an average soil bulk density
of 1.35gem™ and a soil depth of 60cm, 159 and
136 kg Nha~! of gross N was mineralized over 55
days for the cover and no cover treatments, respec-
tively. Declines in EC, occurred between JD 119
and 133, and between JD 144 and 159 were 0.063
and 0.055dSm™!, respectively. These losses, appar-
ently associated with N losses due to leaching and or
denitrification, represented NO3—N losses of 71 and
62kgNha~! for cover crop and no cover, respec-
tively. Subtraction of EC, estimated N losses from
the EC,; estimated gross N mineralized during this 55
day period results in an estimated net N available to
corn plants of 88 and 74kgNha™' on cover and no
cover plots, respectively, equivalent to a plant avail-
able N net formation rate of 1.6-13kgNha~! per
day. This is similar to the range of 0.8-1.] keNha™!
per day for soil from the same treatments that were
incubated in the laboratory under ideal conditions of
moisture and temperature (data not shown). Based on
laboratory analyses for soil NO3;-N concentrations
in the top 0—46cm of soil between ID 110 and 165,
the average N mineralized from all treatments of the
cover and no cover plots were 83 and 56kgNha™',

Table 2

respectively. This equates to an average mineraliza-
tion rate of 1.5 and 1.0kgNha~' per day. From this,
EC, appeared to be a reliable indicator of soluble N
gains and Josses in soil. and should serve as a reliable
indicator of sufficiency of available N for corn early
in the growing season and as an indicator of N surplus
after harvest.

3.3. Soil electrical conducrivity (EC).,) as
influenced by available N and soil warer conrent

At the beginning of the growing season (JD 75),
the levels of NHy and NOs in the O to 46 c¢m soil layer
ranged from 19 to 39, and from 3 to 17kgNha™', re-
spectively (Table 2). The NOj levels in the cover crop
soils were significantly lower than those without a
cover crop, indicating that the cover crop had utilized
N remaining in the soil after harvest of the previous
corn crop. Also. the proportion of the total soil elec-
trical conductivity that was due to NO3-N was higher
without (8-20%) than with a cover crop (3-13%),
The proportion of the total conductivity due to total
available N (NH4 and NOz) was higher and ranged
from 34-58% across cover treatments as compared to
no winter cover. For soil samples taken on 13 Septem-
ber (JD 252), at the end of the growing season, NHy
levels were similar between all treatments but NQ-
levels tended to be slightly higher where there was no
cover crop (Table 3). Also, the proportion of conduc-
tivity that was due to NO3;-N and (NH;—N + NOz-N)
tended to be higher where there was no cover crop
and ranged from 9 to 31%, and from 14 to 40%,
respectively.

Soil NH:-N and NO3~N levels, electrical conducrivity (soil:water, 1:1), and the proportion of conductivity from NO; and NHy in samples
from O to 46 cm layer sampled on 16 March 1999 (ID 75} with (+CC) and without (—CC) a rye winter cover crop on the manure

management plots at MARC

Treatment NH;-N NOz;-N 1:1 Electrical con- % of ECy.* % of EC,,;*
(ngg ") (ngg™hy ductivity (dSm™1) NO; NH,; + NO;
+CC -CC +CC —-CC +CC -CC +CC —CC +CC -CC

Manure @ N rate (MN) e 28.5 3.0 156 .64 0.61 1 8.4 336 51.6

Compost @ N rate {CN) 239 290 18 16.8 033 0.62 23 19.5 347 532

Manure @ P rate (MP) 38.8 29.6 20 12.3 0.50 0.52 3.0 169 584 57.7

Compost @ P rate (CP) 19.7 30.8 % 138 0.53 0.59 13.2 16.6 308 54.1

Fertilizer N (NCK) 19.2 253 1.5 54 0.45 0.47 2.5 8.3 37.0 559

*The 1:1 electrical conductivity attributable to NO3 or NO: = NHy is calculated by dividing the total amount {nge™") of each species

by 140 pgg~' per dSm~" conductivity.
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Table 3

191

Soil NH4~-N and NO3;-N levels, ¢lectrical conductivity {1:1, soil:water), and the propertion of conductivity from NO; and NHy in samples
from the 0 to 46 cm laver sampled on 13 September 1999 (JD 252) with (+CC} and without (—CC) a rye winter cover crop on the

manure management plots at MARC

Treatment NH4-N NO:-N 1:1 Electrical con- % of EC|.* NG; % of ECy*
(nge™h) (nggh ductivity (dSm™") NH: + NO;
+CC  —CC  +0C  —CC  +CC  —CC +CC  —CC +CC ~CC

Manure @ N rate (MN) 4.4 39 4.8 6.3 0.55 052 6.2 8.6 118 14.0

Compost @ N rate (CN) 4.2 39 16.4 163 0.54 0.51 20 145 15 19.9

Manure @& P rate (MP) 4.7 50 6.2 13.4 0.34 0.36 12.8 267 226 36.6

Compost @ P rate (CP) 4.0 51 2.8 48 0.36 0.40 5.6 8.8 13.5 17.8

Fertilizer N (NCK) 54 52 23 17.4 0.36 .40 46 31.0 157 40.0

® The 1:1 electrical conductivity auributable 1o NG5 or NO; + NH. is calculated by dividing the total amount {ug g~} of each species
by 140 pg g’l per dSm~' conductivity; proportion of EC).; is then calculated by (EC;. of ion(s)/EC;. . soil) x 100.

It was interesting to note that the ‘background’
total soil electrical conductivity (ECi.q) tended to
decline from the beginning (Table 2) to the end
(Table 3) of the growing season. and more so in treat-
ments that did not receive recent organic amendments.
The ECy.; of MN and CN treatments had declined
slightly from an average of 0.60dS m~! in mid-March
to a value of 0.53dS m™! in mid-September. However,
the ECy.; of treatmenis not receiving recent organic
amendments (MP, CP, and NCK) decreased from
0.51 to 0.37dS m™over the same period. Under field
conditions. decreases in ‘background’ conductivity
are due in part to reductions in soil water content and
available soil organic levels as the season progresses.

Table 4

In this research study, profile weighted soil elec-
trical conductivity values (EC; to about 75 cm) using
the EMzg were highly correlated with soil NOs—N in
the surface 0-23 and 23-46 cm soil layers throughout
the growing season (Table 4). Correlations in sur-
face soil (0-23 cm) were absent or less pronounced
for treatments not receiving recent additions of ma-
nure or compost but did exist at the second depth
(23-46cm). Significant correlations were also found
between EM3sg s0il electrical conductivity mea-
surements and soil water content as measured by
water-filled pore space at both soil depths. These
correlations, however, were not as high as those
for NO3—N.

Pearson’s correlation coefficients of surface soil electromagnetic conductivity measured with the EM38 and soil NO3;—N and H»O {relative
saturation) contents for soil depths of 0-23 and 23-46cm with (+CC) and without (—CC) a rye winter cover crop at 18 times during the

growing season on the MARC manure management plots in 1999

Treatment Cover crop 010 23cm NOs-N Soil depth soil 23 e 46cm Seil depth soil
(ege™") H; O WFPS* NO:-N (vgg™!) H>0 WFPS*

Manure @ N rate {(MN) +CC 0.79 0.49* 0.81™ 0.50*

-CC 0.48* 0.58" 0.7~ 0.50*
Compost @ N rate (CN) +CC .71 0.59* 0.49* 0.59*

-CC 0.487 0.50* 0.86™* Q.44
Manure @ P rate {(MP) +CC 0.52* 0.4 0.47* g7z

-CC 0.16 0.48* 0.68* 0.50*
Compost @ P rate (CP) +CC 0.34 0.31 —0.25 0.35

-CC -0.11 0.547 0.55* 0.55*
Ferttlizer N (NCK) +CC 0.08 0.58* 0.60** 0.10

—CC —0.23 058 0.16 .37

“ Soil WFPS is synonymous with relative saturation.

*** Indicate significant correlations at P < 0.001. respectively.
" Indicate significant correlations at P < 0.01. respectively.

* Indicate significant correlations at P < 0.05, respectively,
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The utility of soil electrical conductivity as a mea-
sure of the mineralization and release of soil available
N depends on several factors, including seasonal
changes in soil water content and the relative propor-
tion of the ‘background’ conductivity signal, which
is attributable to mineralized available N (De Neve
et al., 2000). Qur analyses for 1999 did not permmit
a complete evajuation of the proportion of the soil
electrical conductivity signal resulting from NO3 and
(NOj3 + NH3) throughout the entire growing season.
However, preliminary results from the vear 2000 in-
dicated that, among soil anions, NO:z accounts for
25-35% of the soil conductivity signal (EC).;) fol-
lowed in order of predominance by HCO; (25-30%),
804 (10-25%), C1 (10-15%), and PO, (2-5%).

4. Conclusions

Field measurement of soil electrical conductiv-
ity (EC,) identified the effects of manure. compost,
fertilizer N, and cover crop treatments on changes
in available N levels before, during, and after the
com-growing season (Figs. 2 and 3). Recently applied
compost and manure at the N rate resulted in consis-
tently higher conductivity and levels of available N
followed by compost and manure at the P rate, which
hadn’t been applied since 1997. The N fertilizer treat-
ment (NCK), unlike manure and compost treatments,
tended to have the lowest soil conductivity and least
residual effect after application. Ferguson and Nien-
aber (2000) reported that average com silage yield
over 7 years, with application of organic residues,
was equal to or greater than that from inorganic N
fertilizer. With the 1999 crop continuing the same
trend, the 1999 yields for the MN and CN treatments
were observably higher than MP and CP, and NCK
resulted in the lowest yield. Sequential measurement
of profile weighted soil electrical conduciivity (EC;)
was effective in identifying the dynamic changes in
available soil N, as affected by animal manure and N
fertilizer treatments, during the COTN-growing seasomn.
This method also clearly identified the effectiveness
of cover crops in minimizing levels of available soil
N before and after the corn-growing season, when
soluble N is most subject to toss. Ferguson and Nien-
aber (2000) reported that use of a winter cover crop
was effective in reducing NO; accumulation and

leaching from high rates of organic applications (MN
and CN) on this experimental fieid. In 1999, the win-
ter cover crop significantly reduced residual NO3;-N
at all depths below 0.15m to a depth of 1.5m; from
76kgNha™' with no cover crop to 34kgNha~!
where a rye winter cover crop was planted, Time se-
quence EC; maps provided insights into temporal soil
dynamics revealing identifiable differences in rates of
change of soil conductivity, and apparently available
N, among treatments. Soil conductivity appeared to
be a reliable indicator of soluble N gains and iosses in
soil and may serve as a measure of N sufficiency for
corn early in the growing season. Soil conductivity
may also be used as an indicator of N surplus after
harvest when N is prone to loss from leaching and/or
denitrification.
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